What we can and cannot learn from international student assessments?

Maciej Jakubowski and Tomasz Gajderowicz

Unimersytet Warszawski
Wydział Nauk Ekonomicznych

Agenda

\checkmark What are international large-scale assessments? Are they very different?
\checkmark Key results. Can we trust them?
\checkmark Examples of important evidence-based lessons
\checkmark How reliable are non-cognitive data?
\checkmark Can we trust research based on ILSA data?

ILSA historically

2000s:

before 1990:
FIMS 1964
FISS 1970
SIMS 1980
SISS 1983

PIRLS 20012006
TIMSS 2003 2007
TALIS 2008
TED S-M
ICCS 2009
PISA 2000 200320062009

1990s:
Reading L
TIMSS 1995
IALS
CIVIC

2010s
TALIS 2013 2018
ESLC 2012
ICILS 20132018
TIMSS 2011 20152019
PIRLS 20112016
PISA 2012 20152018

Student population represented in ILSA

TIMSS, PISA and PIRLS - are they different

	TIMSS	PISA	PIRLS
Subjects/domains	Mathematics and science	Reading, mathematics, science... but also global comptences, problem solving, financial literacy, creativity	Reading
Assessment framework	„lnternationally agreed curriculum"	„ability to use knowledge and skills usefulto meet real-life challenges"	„broad notion of what an
age/gradity to read is"			

Statistical methods CB adaptive/branched test, conditional PVs and 3PL IRT model, replicate weights

Student population	41 milion (TIMSS 2019)	29 milion (PISA 2018)	19 million (PIRLS 2016)

Reading assessment framework in PISA and PIRLS

PISA 2009	PIRLS 2006
Access and retrieve	Focus on and retrieve explicitly stated information
	Make straightforward inferences
	Interpret and integrate ideas and information
Reflect and evaluate	Examine and evaluate content, language, and textual elements

EVIDENCE

* Achievement comparisons
: Inequality measures
* Achievement trends
* Comparisons of student groups with similar characteristics
* Associations/causal relations between structural choices in education systems and achievement

Figure 1. Percent-correct ranking based on all PISA 2006 science items and the percent-correct ranking basec on countries' preferred items plus the items kept from the previous PISA cycles

OECD Education Working Papers No. 46

Analysis of PISA 2006 Preferred Items Ranking Using the Percent-Correct Method

Ray Adams, Alla Berezner, Maciej Jakubowski

Country		$\begin{aligned} & \frac{10}{7} \\ & \substack{\pi \\ 3 \\ 0 \\ 2} \end{aligned}$		$\begin{aligned} & \frac{\pi}{2} \\ & \frac{5}{2} \\ & \frac{2}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{y}{0} \\ & \tilde{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$			$\frac{\infty}{2}$		늧 © ᄃ ©
Singapore	625 (3.9)	625 (3.9)	619 (3.8)	620 (3.8)	617 (3.8)	625 (3.9)	618 (3.8)	624 (3.9)	624 (3.9)	625 (3.9)	624 (3.8)
Hong Kong SAR	602 (3.3)	602 (3.3)	601 (3.3)	600 (3.3)	598 (3.5)	602 (3.4)	598 (3.3)	600 (3.3)	602 (3.4)	601 (3.3)	601 (3.3)
Korea, Rep. of	600 (2.2)	599 (2.2)	599 (2.2)	598 (2.2)	592 (2.2)	599 (2.2)	594 (2.2)	603 (2.3)	596 (2.2)	601 (2.2)	601 (2.2)
Chinese Taipei	599 (1.9)	598 (1.9)	596 (1.9)	597 (2.0)	593 (2.0)	599 (1.9)	595 (2.0)	599 (2.0)	594 (2.0)	601 (2.0)	599 (1.9)
Japan	593 (1.8)	590 (1.8)	595 (1.7)	593 (1.8)	590 (1.7)	592 (1.8)	591 (1.7)	594 (1.7)	587 (1.8)	596 (1.8)	594 (1.8)
Russian Federation	567 (3.3)	566 (3.4)	571 (3.4)	570 (3.4)	569 (3.3)	567 (3.4)	571 (3.4)	566 (3.3)	567 (3.4)	566 (3.3)	567 (3.4)
Northern Ireland	566 (2.7)	567 (2.8)	564 (2.7)	564 (2.7)	567 (2.8)	566 (2.8)	565 (2.8)	566 (2.7)	567 (2.8)	565 (2.8)	565 (2.7)
England	556 (3.0)	556 (3.0)	553 (3.0)	554 (2.9)	555 (3.0)	556 (3.0)	552 (3.0)	556 (3.0)	555 (3.1)	555 (3.0)	556 (3.0)
Ireland	548 (2.5)	549 (2.5)	545 (2.4)	546 (2.4)	547 (2.5)	549 (2.5)	546 (2.5)	549 (2.5)	549 (2.5)	548 (2.5)	548 (2.5)
Latvia	546 (2.6)	546 (2.6)	551 (2.7)	548 (2.6)	552 (2.6)	546 (2.6)	550 (2.6)	546 (2.6)	548 (2.7)	545 (2.6)	546 (2.6)
Norway (5)	543 (2.2)	543 (2.2)	542 (2.2)	542 (2.2)	544 (2.2)	542 (2.2)	541 (2.2)	543 (2.2)	543 (2.2)	542 (2.2)	544 (2.2)
Lithuania	542 (2.8)	542 (2.8)	547 (2.8)	543 (2.8)	545 (2.9)	542 (2.8)	545 (2.8)	541 (2.7)	543 (2.8)	542 (2.8)	542 (2.8)
Austria	539 (2.0)	540 (2.0)	536 (2.1)	543 (2.1)	541 (2.1)	538 (2.0)	542 (2.1)	539 (2.0)	539 (2.0)	538 (2.1)	540 (2.0)
Netherlands	538 (2.2)	537 (2.2)	541 (2.2)	539 (2.3)	544 (2.3)	537 (2.2)	538 (2.3)	537 (2.2)	537 (2.3)	539 (2.1)	539 (2.2)
United States	535 (2.5)	535 (2.5)	532 (2.5)	533 (2.5)	533 (2.5)	535 (2.5)	533 (2.5)	535 (2.5)	536 (2.5)	535 (2.5)	534 (2.5)
Czech Republic	533 (2.5)	532 (2.6)	533 (2.5)	536 (2.6)	532 (2.6)	533 (2.5)	537 (2.6)	533 (2.5)	533 (2.5)	532 (2.5)	533 (2.6)
Belgium (Flemish)	532 (1.9)	531 (1.9)	529 (1.9)	529 (1.9)	528 (1.9)	532 (1.9)	529 (1.9)	533 (1.9)	531 (1.9)	532 (1.9)	533 (1.9)
Cyprus	532 (2.9)	533 (2.9)	530 (2.8)	529 (2.8)	530 (2.9)	532 (2.9)	530 (2.8)	531 (2.9)	535 (2.9)	531 (2.9)	532 (2.9)
Finland	532 (2.3)	532 (2.4)	531 (2.3)	530 (2.3)	533 (2.3)	531 (2.3)	530 (2.3)	531 (2.4)	532 (2.3)	532 (2.4)	532 (2.3)
Denmark	525 (1.9)	525 (2.0)	524 (1.9)	525 (1.9)	527 (1.9)	524 (1.9)	522 (2.0)	524 (1.9)	524 (1.9)	525 (1.9)	526 (1.9)

* Assessment frameworks
* item selection
* Sampling, coverage, and underlying populations
* IRT scaling and plausible values
* Non-cognitive scales

Change in reading performance: PISA 2018 minus PISA 2000

Flemish community ----- French community

READING
Belgium

Flemish

MATHEMATICS
Belgium

Flemish

Reading achievement progress across countries Maciej Jakubowski ${ }^{\text {a }}$, Artur Pokropek ${ }^{\text {b,* }}$
${ }^{a}$ Faculty of Economic Sciences, Warsaw University, Poland ${ }^{\mathrm{b}}$ Educational Research Institute (IBE), Poland

- Comparisons based on randomly taken reading assessment items from PIRLS 2006 and PISA 2009
- The same 3PL IRT model with conditional plausible values

Average reading achievement progress between 4th (PIRLS) and 9th grade (PISA)

Girls are progressing much faster

Change in inequality of student reading achievement between 4th and 9th grade

Progress between primary and secondary education across countries

adjusted change between PIRLS 2006 and PISA 2009
Source: Jakubowski, Pokropek, 2015

Progress between

primary and secondary education across countries

adjusted change between PIRLS 2006 and PISA 2009
Source: Jakubowski, Pokropek, 2015

„The quality of an education system depends on the quality of its teachers"

- Teachers have large and long-term impact on student performance (see reviews in Hanushek and Rivkin, 2006, 2010, 2012; Chetty, Friedman, Rockoff, 2014; Jackson, Rockoff, Staiger, 2014)
- Mixed evidence on the association between achievement and teacher training, PD, teaching methods, teacher characteristics, etc.

Hanushek, Piopiunik, Wiederhold, 2018. JHR
This influential study uses data from 31 countries to analyze relationship between teacher skills and student performance
„We find substantial differences in teacher cognitive skills across countries that are strongly related to student performance."

That would demonstrate the importance of teacher education and selection but how robust are these findings?

See also: Meroni et al., 2015.

Panel A: Numeracy

Numeracy skills teacher

$$
\text { coef }=.083563,(\text { robust }) \mathrm{se}=.03599522, \mathrm{t}=2.32
$$

- Hanushek, Piopiunik, Wiederhold, 2018. JHR: one standard deviation increase in teacher quality would improve student performance by 10\%
- Meroni et al., 2015: variation in teacher skills explain 17\% of crosscountry variation, but the latter explains less than 5\% of student performance variation
- On the PISA scale it gives $\mathbf{1 0}$ score points increase, which is equivalent of less than 3-4 months of school education
- A moderate improvement in average teacher skills would lead to negligible changes in country average performance

Polish structural reforms provided learning opportunities and boosted student performance for students who would go to vocational education

Results of Polish students in PISA: increase from below OECD average to above-average level

400

Figure II.2.12-Relationships among instructional practices in science
Correlations at the student-level based on students' reports, OECD average

Source: OECD, PISA 2015 Database, Table II.2.15.

ST098 When learning <school science> topics at school, how often do the following activities occur?
(Please select one response in each row.)

PISA 2015school science questionnaire (inquiry-based teaching)

ST098Q01TA

ST098Q02TA

ST098Q03NA

ST098Q05TA

In all	In most lessons	Insome lessons	Never or lessons
			ever

Students are given
opportunities to explain their ideas.

Students spend time in the laboratory doing practical experiments.$\square_{1} \quad \square_{2}$ \square

Students are required to argue about science questions.
Students are asked to draw conclusions from an experiment they have conducted.

The teacher explains how a <school science> idea can be applied to a number of different phenomena (e.g. the movement of objects, substances with similar properties).

Index of enquiry-based science instruction

PISA 2015-

 school science questionnaire (inquiry-based teaching)

ST103 How often do these things happen in your lessons for

 this <school science> course?(Remember to answer this question in reference to the $<$ school science $>$ course you indicated earlier.)
(Please select one response in each row.)

PISA 2015school science questionnaire (teacher-directed instruction)

The teacher discusses our questions.

The teacher demonstrates an idea.

Never or almost never	Some lessons	Many lessons	Every lesson or almost every lesson
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
\square_{1}	\square_{2}	\square_{3}	\square_{4}

PISA 2015-

 school science questionnaire (teacher-directed instruction)Index of teacher-directed instruction

Multilevel model results: individual effects

Truancy	$-8.61^{* * *}$	-0.03	$-0.06 *$	-0.04
Motivat	$15.33^{* * *}$	$0.16 * * *$	$0.22^{* * *}$	$0.18^{* * *}$
Teachsup	-4.22	0.05	0	-0.01
Disclisci	$7.80 * *$	0.03	$0.06 *$	0.04
Instscie	-1.15	0.05	$0.26 * * *$	$0.17 * * *$
x_ibteach	-1.06	-0.11	0.11	0.06
c_ibteach	$\mathbf{- 1 0 . 4 8 * * *}$	$\mathbf{- 0 . 0 7}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5 *}$
X_tdteach	-22.04	-0.12	0.27^{*}	-0.01
c_tdteach	$\mathbf{1 4 . 2 4 * * *}$	$\mathbf{0 . 1 4 * * *}$	$\mathbf{0 . 1 1 * * *}$	$\mathbf{0 . 0 2}$
X_perfeed	-15.17	-0.07	0.07	0.01
c_perfeed	$\mathbf{- 1 1 . 9 9 * * *}$	$\mathbf{- 0 . 0 5}$	$\mathbf{0 . 0 8 * *}$	$\mathbf{0 . 1 0 * * *}$
X_adinst	14.96	0.13	-0.13	0.11
C_adinst	$\mathbf{7 . 9 2 * *}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2}$

Multilevel model results: schoollevel effects

		EPISTEMO- ENJOY-		BROAD
	SCIENCE	LOGICAL	MENT	INTERESTS
Truancy	$-8.61 * * *$	-0.03	$-0.06 *$	-0.04
Motivat	$15.33^{* * *}$	$0.16 * * *$	$0.22 * * *$	$0.18 * * *$
Teachsup	-4.22	0.05	0	-0.01
Disclisci	$7.80 * *$	0.03	$0.06 *$	0.04
Instscie	-1.15	0.05	$0.26 * * *$	$0.17 * * *$
x_ibteach	$\mathbf{- 1 . 0 6}$	$\mathbf{- 0 . 1 1}$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 0 6}$
c_ibteach	$-10.48 * * *$	-0.07	0.04	0.05^{*}
x_tdteach	$\mathbf{- 2 2 . 0 4}$	$\mathbf{- 0 . 1 2}$	$\mathbf{0 . 2 7 *}$	$\mathbf{- 0 . 0 1}$
c_tdteach	$14.24 * * *$	$0.14 * * *$	$0.11^{* * *}$	0.02
x_perfeed	$\mathbf{- 1 5 . 1 7}$	$\mathbf{- 0 . 0 7}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 1}$
c_perfeed	$-11.99 * * *$	-0.05	$0.08 * *$	$0.10 * * *$
x_adinst	$\mathbf{1 4 . 9 6}$	$\mathbf{0 . 1 3}$	$\mathbf{- 0 . 1 3}$	$\mathbf{0 . 1 1}$
c_adinst	$7.92 * *$	0.04	0.05	0.02

ST103 How often do these things happen in your lessons for

 this <school science> course?(Remember to answer this question in reference to the $<$ school science $>$ course you indicated earlier.)
(Please select one response in each row.)

PISA 2015school science questionnaire (teacher-directed instruction)

The teacher discusses our questions.

The teacher demonstrates an idea.

Never or almost never	Some lessons	Many lessons	Every lesson or almost every lesson
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
$\square \square_{1}$	\square_{2}	\square_{3}	\square_{4}
\square_{1}	\square_{2}	\square_{3}	\square_{4}

[^0]Instead of asking students what they value or what they like we asked them to say what would they prefer to do (DCE method)

Suppose you have to do a project ... which one do you prefer?

	Option 1	Option 2	Option 3
Subject	Polish	Math	Geography
Form of work on the task	group work	with tutor	independently
Work time	10 hours	5 hours	2 hours
YOUR CHOICE	0		0

Comparing to individual work ...

Student Well-being Factors:

A Multilevel Analysis of PISA 2015 International Data
Submitted 12/10/20, 1st revision 28/10/20, 2nd revision 15/11/20, accepted 30/11/20
dr. Maciej Jakubowski ${ }^{1}$, dr. Tomasz Gajderowicz ${ }^{2}$

Multilevel regression explaining student life satisfaction with individual and school characteristics

Country fixed effects			YES
School level variance	0.074	0.046	0.013
$\%$ of school variance explained		38%	82%
Student level variance	0.939	0.772	0.771
$\%$ of student variance explained		18%	18%
Intraclass correlation	0.073	0.056	0.017
Log pseudolikelihood	-6600.4	-6124.3	-6066.0
N of schools	10056	10056	10056
N of students	226916	226916	226916

Standardized coefficients for school-level association with life satisfaction

Parents emotional support
Sense of Belonging to School
Enjoyment of science
Disciplinary climate in science classes
Achieving motivation
Teacher unfairness
Economic, social and cultural status
Truancy
Bullying
Science performance (first PV)
Test Anxiety

* Average achievement is remarkably stable
* Descriptive data are crucial to understand what are the achievement and challenges for your education system
* Non-cognitive measures are much less reliable and less useful
* Plenty of data and a lot of interesting research but be careful...

Thank you

MJ@EVIDIN.PL

UNiWERsYtet Warszawski
Wydział Nauk Ekonomicznych

[^0]: Źródło: obliczenia własne na podstawie bazy danych PISA 2015

