What we can and cannot learn from international student assessments?

Maciej Jakubowski and Tomasz Gajderowicz

Uniwersytet Warszawski Wydział Nauk Ekonomicznych

- ✓ What are international large-scale assessments? Are they very different?
- ✓ Key results. Can we trust them?
- ✓ Examples of important evidence-based lessons
- ✓ How reliable are non-cognitive data?
- ✓ Can we trust research based on ILSA data?

ILSA historically

2000s:

PISA 2012 2015 2018

Student population represented in ILSA

TIMSS, PISA and PIRLS – are they different

	TIMSS	PISA	PIRLS						
Subjects/domains	Mathematics and science	Reading, mathematics, science but also global comptences, problem solving, financial literacy, creativity	Reading						
Assessment framework	"Internationally agreed curriculum"	"ability to use knowledge and skills usefulto meet real-life challenges"	"broad notion of what an ability to read is"						
Age/grade	4th – 10-year-olds 8th – 14-year-olds	15-year-olds 9th grade modal	4th – 10-year-olds						
Sampling	School->class->student	School->student	School->class->student						
Who is covered?	Students, parents, teachers, principals, and experts	Students and principals; Parents/teachers (optional)	Students, parents, teachers, and principals						
Statistical methods	CB adaptive/branched test, conditional PVs and 3PL IRT model, replicate weights								
Student population	41 milion (TIMSS 2019)	29 milion (PISA 2018) 1	9 million (PIRLS 2016)						

Reading assessment framework in PISA and PIRLS

<u>PISA 2009</u>	<u>PIRLS 2006</u>						
Access and retrieve	Focus on and retrieve explicitly stated information						
	Make straightforward inferences						
Integrate and interpret	Interpret and integrate ideas and information						
Reflect and evaluate	Examine and evaluate content, language, and textual elements						

EVIDENCE Correlation of mean achievement in PISA and TIMSS mathematics

- * Achievement comparisons
- * Inequality measures
- * Achievement trends
- * Comparisons of student groups with similar characteristics
- * Associations/causal relations between structural choices in education systems and achievement

Figure 1. Percent-correct ranking based on all PISA 2006 science items and the percent-correct ranking based on countries' preferred items plus the items kept from the previous PISA cycles

OECD Education Working Papers No. 46

Analysis of PISA 2006 Preferred Items Ranking Using the Percent-Correct Method

Ray Adams, Alla Berezner, Maciej Jakubowski

Country	Average Mathematics Scale Score based on All Items	Norway (5)	Lithuania	Austria	Netherlands	United States	Czech Republic	Belgium (Flemish)	Cyprus	Finland	Denmark
Singapore	625 (3.9)	625 (3.9)	619 (3.8)	620 (3.8)	617 (3.8)	625 (3.9)	618 (3.8)	624 (3.9)	624 (3.9)	625 (3.9)	624 (3.8)
Hong Kong SAR	602 (3.3)	602 (3.3)	601 (3.3)	600 (3.3)	598 (3.5)	602 (3.4)	598 (3.3)	600 (3.3)	602 (3.4)	601 (3.3)	601 (3.3)
Korea, Rep. of	600 (2.2)	599 (2.2)	599 (2.2)	598 (2.2)	592 (2.2)	599 (2.2)	594 (2.2)	603 (2.3)	596 (2.2)	601 (2.2)	601 (2.2)
Chinese Taipei	599 (1.9)	598 (1.9)	596 (1.9)	597 (2.0)	593 (2.0)	599 (1.9)	595 (2.0)	599 (2.0)	594 (2.0)	601 (2.0)	599 (1.9)
Japan	593 (1.8)	590 (1.8)	595 (1.7)	593 (1.8)	590 (1.7)	592 (1.8)	591 (1.7)	594 (1.7)	587 (1.8)	596 (1.8)	594 (1.8)
Russian Federation	567 (3.3)	566 (3.4)	571 (3.4)	570 (3.4)	569 (3.3)	567 (3.4)	571 (3.4)	566 (3.3)	567 (3.4)	566 (3.3)	567 (3.4)
Northern Ireland	566 (2.7)	567 (2.8)	564 (2.7)	564 (2.7)	567 (2.8)	566 (2.8)	565 (2.8)	566 (2.7)	567 (2.8)	565 (2.8)	565 (2.7)
England	556 (3.0)	556 (3.0)	553 (3.0)	554 (2.9)	555 (3.0)	556 (3.0)	552 (3.0)	556 (3.0)	555 (3.1)	555 (3.0)	556 (3.0)
Ireland	548 (2.5)	549 (2.5)	545 (2.4)	546 (2.4)	547 (2.5)	549 (2.5)	546 (2.5)	549 (2.5)	549 (2.5)	548 (2.5)	548 (2.5)
Latvia	546 (2.6)	546 (2.6)	551 (2.7)	548 (2.6)	552 (2.6)	546 (2.6)	550 (2.6)	546 (2.6)	548 (2.7)	545 (2.6)	546 (2.6)
Norway (5)	543 (2.2)	543 (2.2)	542 (2.2)	542 (2.2)	544 (2.2)	542 (2.2)	541 (2.2)	543 (2.2)	543 (2.2)	542 (2.2)	544 (2.2)
Lithuania	542 (2.8)	542 (2.8)	547 (2.8)	543 (2.8)	545 (2.9)	542 (2.8)	545 (2.8)	541 (2.7)	543 (2.8)	542 (2.8)	542 (2.8)
Austria	539 (2.0)	540 (2.0)	536 (2.1)	543 (2.1)	541 (2.1)	538 (2.0)	542 (2.1)	539 (2.0)	539 (2.0)	538 (2.1)	540 (2.0)
Netherlands	538 (2.2)	537 (2.2)	541 (2.2)	539 (2.3)	544 (2.3)	537 (2.2)	538 (2.3)	537 (2.2)	537 (2.3)	539 (2.1)	539 (2.2)
United States	535 (2.5)	535 (2.5)	532 (2.5)	533 (2.5)	533 (2.5)	535 (2.5)	533 (2.5)	535 (2.5)	536 (2.5)	535 (2.5)	534 (2.5)
Czech Republic	533 (2.5)	532 (2.6)	533 (2.5)	536 (2.6)	532 (2.6)	533 (2.5)	537 (2.6)	533 (2.5)	533 (2.5)	532 (2.5)	533 (2.6)
Belgium (Flemish)	532 (1.9)	531 (1.9)	529 (1.9)	529 (1.9)	528 (1.9)	532 (1.9)	529 (1.9)	533 (1.9)	531 (1.9)	532 (1.9)	533 (1.9)
Cyprus	532 (2.9)	533 (2.9)	530 (2.8)	529 (2.8)	530 (2.9)	532 (2.9)	530 (2.8)	531 (2.9)	535 (2.9)	531 (2.9)	532 (2.9)
Finland	532 (2.3)	532 (2.4)	531 (2.3)	530 (2.3)	533 (2.3)	531 (2.3)	530 (2.3)	531 (2.4)	532 (2.3)	532 (2.4)	532 (2.3)
Denmark	525 (1.9)	525 (2.0)	524 (1.9)	525 (1.9)	527 (1.9)	524 (1.9)	522 (2.0)	524 (1.9)	524 (1.9)	525 (1.9)	526 (1.9)

- * Assessment frameworks
- * item selection
- * Sampling, coverage, and underlying populations
- * IRT scaling and plausible values
- * Non-cognitive scales

Change in reading performance: PISA 2018 minus PISA 2000

MATHEMATICS Belgium Low-achievers in High-achievers in mathematics mathematics Quantile

Contents lists available at ScienceDirect

International Journal of Educational Development

journal homepage: www.elsevier.com/locate/ijedudev

Reading achievement progress across countries

Maciej Jakubowski^a, Artur Pokropek^{b,*}

^a Faculty of Economic Sciences, Warsaw University, Poland ^b Educational Research Institute (IBE), Poland

- Comparisons based on randomly taken reading assessment items from PIRLS 2006 and PISA 2009
- The same 3PL IRT model with conditional plausible values
- Re-weighting to adjust for demographic differences
- Regression correction for age effect

Average reading achievement progress between 4th (PIRLS) and 9th grade (PISA)

Girls are progressing much faster

Change in inequality of student reading achievement between 4th and 9th grade

Progress between primary and secondary education across countries

Source: Jakubowski, Pokropek, 2015

Progress between

primary and secondary education across countries

adjusted change between PIRLS 2006 and PISA 2009

Source: Jakubowski, Pokropek, 2015

"The quality of an education system depends on the quality of its teachers"

- Teachers have large and long-term impact on student performance (see reviews in Hanushek and Rivkin, 2006, 2010, 2012; Chetty, Friedman, Rockoff, 2014; Jackson, Rockoff, Staiger, 2014)
- Mixed evidence on the association between achievement and teacher training, PD, teaching methods, teacher characteristics, etc.

Hanushek, Piopiunik, Wiederhold, 2018. JHR

This influential study uses data from 31 countries to analyze relationship between teacher skills and student performance

"We find substantial differences in teacher cognitive skills across countries that are strongly related to student performance."

That would demonstrate the importance of teacher education and selection but how robust are these findings?

See also: Meroni et al., 2015.

Panel A: Numeracy

Numeracy skills teacher

coef = .083563, (robust) se = .03599522, t = 2.32

- Hanushek, Piopiunik, Wiederhold, 2018. JHR: one standard deviation increase in teacher quality would improve student performance by 10%
- Meroni et al., 2015: variation in teacher skills explain 17% of crosscountry variation, but the latter explains less than 5% of student performance variation
- On the PISA scale it gives 10 score points increase, which is equivalent of less than 3-4 months of school education
- A moderate improvement in average teacher skills would lead to negligible changes in country average performance

Polish structural reforms provided learning opportunities and boosted student performance for students who would go to vocational education

Jakubowski, Patrinos, Porta, Wisniewski, 2016

Results of Polish students in PISA: increase from below OECD average to above-average level

Figure II.2.12 • Relationships among instructional practices in science

Correlations at the student-level based on students' reports, OECD average

Source: OECD, PISA 2015 Database, Table II.2.15.

PISA 2015school science questionnaire (inquiry-based teaching)

ST098 When learning <school science> topics at school, how often do the following activities occur?

(Please select one response in each row.)

		In all lessons	In most lessons	In some lessons	Never or hardly ever
ST098Q01TA	Students are given opportunities to explain their ideas.	\Box_1	\square_2	\square_3	\square_4
ST098Q02TA	Students spend time in the laboratory doing practical experiments.	\Box_1	\square_2	\square_3	\Box_4
ST098Q03NA	Students are required to argue about science questions.	\square_1	\square_2		
ST098Q05TA	Students are asked to draw conclusions from an experiment they have conducted.	\Box_1		\square_3	□_ ₄
ST098Q06TA	The teacher explains how a <school science=""> idea can be applied to a number of different phenomena (e.g. the movement of objects, substances with similar properties).</school>	\Box_1	\square_2	\square_3	□_ ₄
	Students are allowed to design		_	_	

PISA 2015school science questionnaire (inquiry-based teaching)

Index of enquiry-based science instruction

PISA 2015school science questionnaire (teacher-directed instruction)

ST103 How often do these things happen in your lessons for this <school science> course?

(Remember to answer this question in reference to the <school science> course you indicated earlier.) (Please select one response in each row.)

Every

		Never or almost never	Some lessons	Many lessons	lesson or almost every lesson
ST103Q01NA	The teacher explains scientific ideas.	\Box_1		\square_3	
ST103Q03NA	A whole class discussion takes place with the teacher.		\square_2		
ST103Q08NA	The teacher discusses our questions.		\square_2		
ST103Q11NA	The teacher demonstrates an idea.		\square_2		

PISA 2015school science questionnaire (teacher-directed instruction)

Index of teacher-directed instruction

Multilevel regression analysis

Multilevel model results: individual effects

	SCIENCE	EPISTEMO- LOGICAL	ENJOY- MENT	BROAD INTERESTS
Truancy	-8.61***	-0.03	-0.06*	-0.04
Motivat	15.33***	0.16***	0.22***	0.18***
Teachsup	-4.22	0.05	0	-0.01
Disclisci	7.80**	0.03	0.06*	0.04
Instscie	-1.15	0.05	0.26***	0.17***
x_ibteach	-1.06	-0.11	0.11	0.06
c_ibteach	-10.48***	-0.07	0.04	0.05*
x_tdteach	-22.04	-0.12	0.27*	-0.01
c_tdteach	14.24***	0.14***	0.11***	0.02
x_perfeed	-15.17	-0.07	0.07	0.01
c_perfeed	-11.99***	-0.05	0.08**	0.10***
x_adinst	14.96	0.13	-0.13	0.11
c_adinst	7-92**	0.04	0.05	0.02

Multilevel model results: schoollevel effects

	SCIENCE	EPISTEMO- LOGICAL	ENJOY- MENT	BROAD INTERESTS
Truancy	-8.61***	-0.03	-0.06*	-0.04
Motivat	15.33***	0.16***	0.22***	0.18***
Teachsup	-4.22	0.05	0	-0.01
Disclisci	7.80**	0.03	0.06*	0.04
Instscie	-1.15	0.05	0.26***	0.17***
x_ibteach	-1.06	-0.11	0.11	0.06
c_ibteach	-10.48***	-0.07	0.04	0.05*
x_tdteach	-22.04	-0.12	0.27*	-0.01
c_tdteach	14.24***	0.14***	0.11***	0.02
x_perfeed	-15.17	-0.07	0.07	0.01
c_perfeed	-11.99***	-0.05	0.08**	0.10***
x_adinst	14.96	0.13	-0.13	0.11
c_adinst	7.92**	0.04	0.05	0.02

PISA 2015school science questionnaire (teacher-directed instruction)

ST103 How often do these things happen in your lessons for this <school science> course?

(Remember to answer this question in reference to the <school science> course you indicated earlier.) (Please select one response in each row.)

Every

		Never or almost never	Some lessons	Many lessons	lesson or almost every lesson
ST103Q01NA	The teacher explains scientific ideas.	\square_1		\square_3	
ST103Q03NA	A whole class discussion takes place with the teacher.		\square_2		
ST103Q08NA	The teacher discusses our questions.		\square_2		
ST103Q11NA	The teacher demonstrates an idea.		\square_2		

PISA 2015: Polish students do not like to cooperate but what is their reference point?

Instead of asking students what they value or what they like we asked them to say what would they prefer to do (DCE method)

Suppose you have to do a project ... which one do you prefer?

	Option 1	Option 2	Option 3
Subject	Polish	Math	Geography
Form of work on the task	group work	with tutor	independently
Work time	10 hours	5 hours	2 hours
YOUR CHOICE		*	

Comparing to individual work ...

pp. 1312-1333

Student Well-being Factors: A Multilevel Analysis of PISA 2015 International Data

Submitted 12/10/20, 1st revision 28/10/20, 2nd revision 15/11/20, accepted 30/11/20

dr. Maciej Jakubowski¹, dr. Tomasz Gajderowicz²

Multilevel regression explaining student life satisfaction with individual and school characteristics

e enternant			
Country fixed effects			YES
School level variance	0.074	0.046	0.013
% of school variance explained		38%	82%
Student level variance	0.939	0.772	0.771
% of student variance explained		18%	18%
Intraclass correlation	0.073	0.056	0.017
Log pseudolikelihood	-6600.4	-6124.3	-6066.0
N of schools	10056	10056	10056
N of students	226916	226916	226916

Standardized coefficients for school-level association with life satisfaction

- * Average achievement is remarkably stable
- * Descriptive data are crucial to understand what are the achievement and challenges for your education system
- Non-cognitive measures are much less reliable and less useful
- Plenty of data and a lot of interesting research but be careful...

Thank you

MJ@EVIDIN.PL

UNIWERSYTET WARSZAWSKI Wydział Nauk Ekonomicznych